土壤分析

更新时间:2022-08-25 14:39

土壤分析是对土壤的组成分和(或)物理、化学性质进行的定性、定量测定。是进行土壤生成发育、肥力演变、土壤资源评价、土壤改良和合理施肥研究的基础工作,也是环境科学中进行环境质量评价的重要手段。

土壤组成

土壤是由固体、液体、气体三相共同组成的复杂的多相体系。土壤固相包括矿物质、有机质和土壤生物;在固相物质之间为形状和大小不同的孔隙。孔隙中存在水分和空气。

土壤以固体为主,三相共存。三相物质的相对含量,因土壤种类和环境条件而异。三相物质互相联系、制约,并且上与大气,下与地下水相连,构成一个完整的多介质多界面体系。

土壤矿物质

土壤矿物质是岩石经过物理风化和化学风化形成的。按其成因类型可将土壤矿物质分为两类:

一类是原生矿物,它们是各种岩石(主要是岩浆岩)受到程度不同的物理风化而未经化学风化而形成,其原来的化学组成和结晶构造都没有改变,仅改变其形状为沙粒和粉沙粒;

另一类是次生矿物,它们大多数是由原生矿物经化学风化后形成的新矿物,其化学组成和晶体结构都有所改变。

在土壤形成过程中,原生矿物以不同的数量与次生矿物混合成为土壤矿物质。

1.原生矿物

原生矿物主要有石英、长石类、云母类、辉石、角闪石、橄榄石、赤铁矿、磁铁矿、磷灰石、黄铁矿等。

2.次生矿物

土壤中次生矿物的种类很多,不同的土壤所含的次生矿物的种类和数量也不尽相同。通常根据性质与结构可分为三类:简单盐类、三氧化物和次生铝硅酸盐类。如方解石(CaCO3)、白云石[Ca、Mg(CO3) 2] 、石膏(CaSO4·2H2O)、褐铁矿(2Fe2O3·3H2O和高岭石等。

土壤有机质

土壤有机质是土壤中含碳有机物的总称。由进入土壤的植物、动物及微生物残体经分解转化逐渐形成。通常可分为两大类:一类为非腐殖物质,包括糖类化合物(淀粉、纤维素、半纤维素、果胶质等)、树脂、脂肪、单宁、蜡质、蛋白质和其他含氮化合物,它们都是组成有机体的各种有机化合物,一般占土壤有机质总量的10% ~ 15%;另一类是腐殖物质,是由植物残体中稳定性较大的木质素及其类似物,在微生物作用下,部分地被氧化而增强反应活性形成的一类特殊的有机物,它不属于有机化学中现有的任何一类。

土壤水分

土壤水分是土壤的重要组成部分,主要来自大气降水和灌溉。在地下水位接近地面(2~3m)的情况下,地下水也是上层土壤水分的重要来源。此外,空气中水蒸气遇冷凝成为土壤水分。

土壤水分并非纯水,实际上是土壤中各种成分和污染物溶解形成的溶液,即土壤溶液。因此土壤水分既是植物养分的主要来源,也是进入土壤的各种污染物向其它环境圈层(如水圈、生物圈等)迁移的媒介。

土壤空气

土壤空气存在于未被水分占据的土壤空隙中。土壤空气组成与大气基本相似,主要成分都是N2、O2、CO2。

分类

土壤化学分析

主要是测定土壤的各种化学成分的含量和某些性质。常见的测定项目有:土壤矿质全量测定(即测定硅、铝、铁、锰、钛、磷、钾、钠、钙、镁的含量),土壤活性硅、铝、铁、锰含量测定,土壤全氮、全磷和全钾含量的测定,土壤有效养分(铵态氮、硝态氮、有效磷和钾)含量测定,土壤微量元素含量和有效性微量元素(铁、硼、锰、铜、锌和钼)含量测定,土壤有机质含量测定,以及土壤酸碱度、土壤阳离子交换量、土壤交换性盐基的组成的测定等。其中土壤矿质全量、有机质含量、全氮量、有效养分含量、土壤酸碱度、阳离子交换量和交换性盐基组成等是必须进行测定的项目,故称土壤常规分析。其他测定项目则可根据分析目的取舍。20世纪30~40年代兴起的土壤测试,也可列入土壤化学分析范畴。

土壤化学分析方法很多,经典的方法有重量法、容量法和比色法。现代实验室多采用自动化、半自动化仪器进行土壤常规分析。这种实验室通常由4个系统组成:①样品半自动粉碎系统;②样品半自动提取系统;③由自动分析仪流动注射分析仪、原子吸收/火焰发射光谱仪、pH自动分析仪和碳氮自动分析仪等组成的自动分析系统;④中央数据处理系统。土壤矿质全量分析常用能量色散 X射线能谱法或带电粒子活化分析仪或中子活化分析仪进行。采用此法,土壤样品无需经任何处理即可直接测定,从而避免了因化学处理而造成土壤样品中成分的损失或杂质的掺入及对土壤样品的稀释作用等缺陷。

土壤物理分析

主要测定土壤中物质存在状态、运动形式以及能量的转移等。常见的测定项目有:土壤含水量、土水势、饱和和非饱和导水度、水分常数、土壤渗漏速度、土壤机械组成、土壤比重和土壤容重、土壤孔隙度、土壤结构和微团聚体、土壤结持度、土壤膨胀与收缩、土壤空气组成和呼吸强度、土壤温度和导热率、土壤机械强度、土壤承载量和应力分布以及土壤电磁性等。

土壤物理分析除经典方法外,多借助现代化仪器进行,如应用水银注入测孔仪测定土壤结构(孔径可小至5纳米);应用磨片、光学技术及扫描电镜测定土壤结构的微域变化;应用带有电子计算机的中子-γ射线联用仪在田间直接测定土壤水分和土壤比重;应用气相色谱仪和三轴剪力仪分别测定土壤空气组成和土壤力学性质等。此外,各种型号的测温、测磁仪和土壤颗粒自动分析记录仪也为土壤物理分析提供了简捷而又精确的测试手段。

意义

土壤分析对土壤学的发展有很大影响。早在19世纪中叶,德国化学家J.von李比希将经典的化学方法应用于土壤和植物分析,根据测得的结果,提出了植物矿质营养学说和归还学说,大大推进了土壤学的发展。在其后的100多年间,土壤分析的方法日益增多。至20世纪50年代末,许多自动化、半自动化分析仪器陆续应用于土壤分析。各种化学的和物理的传感器以及电子计算机和遥测装置也已逐步应用,土壤分析正步入一个新的发展时期。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}